Distributed computation of the knn graph for large high-dimensional point sets

نویسندگان

  • Erion Plaku
  • Lydia E. Kavraki
چکیده

High-dimensional problems arising from robot motion planning, biology, data mining, and geographic information systems often require the computation of k nearest neighbor (knn) graphs. The knn graph of a data set is obtained by connecting each point to its k closest points. As the research in the above-mentioned fields progressively addresses problems of unprecedented complexity, the demand for computing knn graphs based on arbitrary distance metrics and large high-dimensional data sets increases, exceeding resources available to a single machine. In this work we efficiently distribute the computation of knn graphs for clusters of processors with message passing. Extensions to our distributed framework include the computation of graphs based on other proximity queries, such as approximate knn or range queries. Our experiments show nearly linear speedup with over one hundred processors and indicate that similar speedup can be obtained with several hundred processors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PARALLEL kNN ON GPU ARCHITECTURE USING OpenCL

In data mining applications, one of the useful algorithms for classification is the kNN algorithm. The kNN search has a wide usage in many research and industrial domains like 3-dimensional object rendering, content-based image retrieval, statistics, biology (gene classification), etc. In spite of some improvements in the last decades, the computation time required by the kNN search remains the...

متن کامل

High-dimensional kNN joins with incremental updates

The k Nearest Neighbor (kNN) join operation associates each data object in one data set with its k nearest neighbors from the same or a different data set. The kNN join on high-dimensional data (high-dimensional kNN join) is an especially expensive operation. Existing high-dimensional kNN join algorithms were designed for static data sets and therefore cannot handle updates efficiently. In this...

متن کامل

Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection

Nearest neighbor graphs are widely used in data mining and machine learning. A brute-force method to compute the exact kNN graph takes Θ(dn2) time for n data points in the d dimensional Euclidean space. We propose two divide and conquer methods for computing an approximate kNN graph in Θ(dnt) time for high dimensional data (large d). The exponent t ∈ (1,2) is an increasing function of an intern...

متن کامل

A Graph-Based Semi-Supervised k Nearest-Neighbor Method for Nonlinear Manifold Distributed Data Classification

k Nearest Neighbors (kNN) is one of the most widely used supervised learning algorithms to classify Gaussian distributed data, but it does not achieve good results when it is applied to nonlinear manifold distributed data, especially when a very limited amount of labeled samples are available. In this paper, we propose a new graph-based kNN algorithm which can effectively handle both Gaussian d...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of parallel and distributed computing

دوره 67 3  شماره 

صفحات  -

تاریخ انتشار 2007